
AFRL-IF-RS-TR-1999-251
In-House Report
December 1999

X WINDOWS-BASED INTERACTIVE TEST
PATTERNS FOR OVERLAID STEREOSCOPIC AND
TILED DISPLAYS

Peter A. Jedrysik and Richard H. Sweed, AFRL
Robert VanPelt, Litton PRC

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

—**—-.. 19991227 033

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

AFRL-IF-RS-TR-1999-251 has been reviewed and is approved for publication.

APPROVED:

STEVEN D.FARR
Chief, C4ISR Modeling & Simulation
Information Systems Division

FOR THE DIRECTOR: (L^t
JAMES W. CUSACK
Chief, Information Systems Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFSB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information i. estimated to average 1 hour per response, including the time for reyiewlncMotions, searchngn"x'*^ d^"u"»£
aatrwrinoiaiii maintair.no the data needed, and completing end reviewing the collection of information. Send comment» regarding this burden animate or any otneaepec: °'this
MK^ onnformaion including suggestions tor reducing thi» burden, to Washington Headquarters Services, Directorate »or Information Operation, and Reports 1215 Jefferson
Sv1?HiShway SuK*e,120 ™AHington7vA 22202-4302, end to the Office of Management end Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

 3. REPORT TYPE AND bAtfe COVERED 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 1999 In House
4. TITLE AND SUBTITLE
X WINDOWS-BASED INTERACTIVE TEST PATTERNS FOR OVERLAID
STEREOSCOPIC AND TILED DISPLAYS

6. AUTHORISJ

Peter A. Jedrysik, Richard H. Sweed and *Robert VanPelt

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSf.ES,

AFRL/IFSB
525 Brooks Road
Rome, NY 13441-4505

"9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFSB
525 Brooks Road
Rome, NY 13441-4505

5. FUNDING NUMBERS

PE-62702F
PR -558S
TA-PR
WU-OJ

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFRL-IF-RS-TR-1999-251

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1999-251

11. SUPPLEMENTARY NOTES
♦Litton PRC contractor, work performed under ADII Lab Support contract.
AFRL Project Engineer: Peter A. Jedrysik/IFSB/(315)330-2150.

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT (Maximum 200 words}

12b. DISTRIBUTION CODE

Composite display systems consisting of multiple video projectors and/or direct view monitors are becoming more
commonplace as the needs for 3D stereoscopic viewing and very high-resolution large screen displays become more
prevalent. In these installations, the goal is to take separate elements and obtain a single amalgamated view. The object of
this in-house task was to develop a number of interactive display patterns that would provide a more accurate, time saving
means to test and align video projects in a tiled Datawall configuration and an overlaid stereoscopic configuration. Several
of these composite display systems are currently implemented in the Advanced Displays and Intelligent Interfaces (ADII)
Visualization Facility at the Information Directorate of AFRL, in Rome, NY.

14. SUBJECT TERMS

display test patterns, tiled display alignment, overlaid stereoscopic display alignment

17. SECURITY CLASSIFICAYION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED
Stan
rrascn

15. NUMBER OF PAGES
44

16. PRICE CODE

26. UMITATtoNÖF ABSTRACTI

UL

Designed using Perform Pre, WHS/DIOR, Oet 94

tandari

Table of Contents

Table of Figures m

Abstract

1. Introduction

1.1 Intended Audience

1.2 Objective 1

3
2. Background..........................»..»»»»""»»»"""""

2.1 Overlaid Stereoscopic Display J

2.2 Tiled Display 5

3. Related Work 9

3.1 GIF & JPEG Test Patterns 9

o
3.2 Pattern Generator Hardware • 7

4. Interactive Test Pattern Generator Software • 10

4.1 Silicon Graphics, Inc. Graphics Library Version 10

4.2 X Windows-Based Version • j°
4.2.1 Grid • }*
4.2.2 ZigZag ll

4.2.3 Grayscales *;*
4.2.4 ColorScales ~
4.2.5 ColorWheel }*
4.2.6 WhiteBorders j*
4.2.7 VerticalLines j^
4.2.8 VerticalLadder |jj
4.2.9 HorizontalLadder j°
4.2.10 4X128X128Blocks j°
4.2.11 LeftRightTickMarks j?
4.2.12 Circle/Ellipse Y7

4.2.13 FlatField |°
4.2.14 DIDspecial J°
4.2.15 DotBox ™
4.2.16 GrayScalesStereo 2U

4.2.17 ColorScalesStereo 21
4.2.18 HorizontalGrayScales 22

5. Application Execution 22

6. X Resource File22

7. The Interfaces 23

7.1 Graphical User Interface (GUI) 23

7.2 Keyboard 24

8. Standards-Based Software Development...25

9. Source Code 26

9.1 BX (Builder Xcessory) Generated 26
9.1.1 main-c.c 26
9.1.2 creation-c.c 26
9.1.3 creation-c.h 26
9.1.4callbacks-c.c 26
9.1.5 datawall.uil 27
9.1.6 bxutils-c.c 27

9.2 Other 27
9.2.1 utilities.c 27
9.2.2 eventjiandlers.c 27
9.2.3 datawall.h !.!.!.."!""ZZ."!""28

10. Convention..^

10.1 Naming 28

10.2 Graphic 28

10.3 Error Handling 28
10.3.1 Informational 28
10.3.2 Fatal !.."!"!"."!."!!!!!"."."!!!!!!!!!!!""!!" 29

11. Building Application... 29

11.1 Makefile 29

11.2 Environment Variables 29

12. Adding A New Pattern.. 29

li

31 13. Summary

33 References

Table of Figures

Figure 1. Geometric Display Distortions *
Figure 2a. Overlaid Configuration ^
Figure 2b. AFRL/IF's Stereoscopic 3D Display System 5

Figure 3a. 1x3 Tiled Configuration •>
Figure 3b. AFRL/IF's Interactive DataWall 6

Figure 4a. The Deployable Interactive DataWall (DID) 8

Figure 4b. The DID Interior Components 8

Figure 5. Grid j*
Figure 6. ZigZag J*
Figure 7. 2 x 2 ZigZag J*
Figure 8. Grayscales j^
Figure 9. ColorScales • J^
Figure 10. ColorWheel 14

Figure 11. WhiteBorders • 14

Figure 12. VerticalLines ^
Figure 13. VerticalLadder ^
Figure 14. HorizontalLadder *°
Figure 15.4X128X128Blocks 16

Figure 16. LeftRightTickMarks 17

Figure 17. Closeup of LeftRightTickMarks 17

Figure 18. Circle 'j8

Figure 19. Ellipse j°
Figure 20. FlatField 18

Figure 21. DIDspecial ^
Figure 22. Closeup of DIDspecial 19

Figure 23. DotBox 2Q

Figure 24. Close-up of Upper Left Comer of DotBox 20
Figure 25. Close-up of One Properly Aligned dot-box 20
Figure 26. GrayScalesStereo (Top Row Only) 21
Figure 27. GrayScalesStereo (Both Rows) 21
Figure 28. ColorScalesStereo (Top Row Only) 21
Figure 29. ColorScalesStereo (Both Rows) • 21
Figure 30. HorizontalGrayScales 22

111

Abstract

Composite display systems consisting of multiple video projectors and/or direct view monitors
are becoming more commonplace as the needs for 3D stereoscopic viewing and very high-
resolution large screen displays become more prevalent. In these installations, the goal is to take
separate elements and obtain a single amalgamated view. The objective of this in-house task was
to develop a number of interactive display patterns that would provide a more accurate,
timesaving means to test and align video projectors in a tiled DataWall configuration and an
overlaid stereoscopic configuration. Several of these composite display systems are currently
implemented in the Advanced Displays and Intelligent Interfaces (ADH) visualization facility at
the Information Directorate of the Air Force Research Laboratory (AFRL/IF) in Rome, New
York.

1. Introduction

1.1 Intended Audience

This report introduces the reader to basic concepts of high resolution, projected displays, the
problems associated with such displays, and how this application can help solve the problems. It
is designed to aid anyone using or maintaining this test pattern generation software including
information required for compiling and linking this application. It is assumed that the user has a
basic knowledge of UMX, X Windows, X library (i.e. Xlib) graphics, Motif and the Integrated
Computer Solutions' (ICS) Builder Xcessory (BX) [3] graphical user interface (GUI)
development tool.

1.2 Objective

The original objective of this in-house task was to develop a Sun Microsystems-based version of
a test pattern generation application previously developed for the Silicon Graphics, Inc. (SGI)
workstations that used the SGI graphics library (GL) [4]. After a short investigation of potential
solutions, we decided to create a more universal application based upon X Windows rather than
simply port the application to the Sun platform. The SGI-based application is capable of
generating a number of test patterns used to align and adjust various characteristics of high
resolution, tiled or overlaid stereoscopic projected displays. The X Windows-based application
provides a superset of the test patterns provided by the SGI-based application. The new
application uses the X primitives to generate all graphics rather than the SGI GL functions. X
Windows was chosen as the development standard due to portability, availability and economic
considerations. Using this application greatly improves composite display image quality by
providing a more accurate and less time consuming method for registration, color balance and
alignment of the video projectors.

Several interactive display test patterns were designed and implemented that provide a
comprehensive testing and alignment environment for a uniform seamlessly tiled nxm display
or an overlaid stereoscopic display. The issues that needed to be addressed included: (1) ensure
each projector is displaying all pixels around its border, (2) allow horizontal alignment of side by
side tiled displays and include a capability to provide vertical alignment for future tiled displays
greater than lx«, (3) ensure accurate color balance among all projectors to assure continuous
color balance across the display, (4) minimize geometric display distortions such as
pincushioning, keystoning, and vertical/horizontal nonlinearity (Fig. 1), (5) test the capacity of
the display system to resolve very high-resolution images, and (6) allow overlaid alignment of a
large screen stereoscopic display.

err ' \\ \\\ II

\r^ ,77 /// ■
_

Correct

i
i
i
1
i 1
i 1
i I
i 1

Pincushioning

Keystoning Vertical Nonlinearity Horizontal Nonlinearity

Figure 1. Geometric Display Distortions

All the video projectors used in the ADII visualization facility are either cathode ray tube (CRT)
based systems composed of separate red, green, and blue CRTs, or liquid crystal display (LCD)
based systems. A key advantage of the CRT based display systems is the ability to correct
display image geometry. Display distortions can be isolated to specific components and adjusted
in a number of ways both mechanically and electronically. Individual CRTs and isolated portions
of the display image can be adjusted independently. It does, however require a significant
amount of effort to optimize the display image. Most LCD projectors have the distinct
advantages of being much brighter, smaller, lighter, and easier to set-up. Their shortfalls,
however, include lower resolution, and the inability to correct display distortions through
geometry adjustments. The latter necessitates precision optics to minimize these distortions,
particularly in a tiled configuration.

All CRT video projectors have some type of internal test pattern generator that is built into the
projectors by the manufacturer to aid in focusing and converging the CRTs. It provides a step-

by-step process that includes manual focus and electronic adjustment of the CRTs to correct
geometric display distortions. The only patterns they provide, however, are typically a grid or a
cross hair with a fixed line width. None of the LCD projectors in use at the ADE facility provide
any such internal test pattern generation. Although the CRT projectors' built-in patterns can be
used for some of the preliminary tuning, they were never intended to address the many issues
associated with our very unique multiple projector display configurations. We have very specific
needs with regard to alignment and color balance. A conventional large screen display would
typically only consist of a single projector, where exact image positioning on the projection
screen and color balance with other projectors isn't required. Alignment and color balance are
critical for tiled configurations to reduce the distraction of the seams and provide a continuous
display image. They are essential in overlaid stereoscopic displays to ensure the left and right eye
images can be fused effectively.

An important aspect of the test pattern environment that was developed is that rather than using
any internal test pattern capability, the projectors are being driven by the computer system,
which also generates the display imagery in our working environments. This provides a more
accurate representation of a working environment display, and allows for a more accurate test of
the entire display system. It takes into account all external and internal distortions; problems
introduced by the computer, communication cabling, distribution hardware, and the projectors.
This ensures more accurate tuning of the displays to produce better and more consistent images
than would otherwise be provided using internally generated patterns.

2. Background

2.1 Overlaid Stereoscopic Display

An overlaid stereoscopic display configuration consists of dual video projectors each rear
projecting either left or right eye images overlaid across the same screen area (Fig. 2). In
rendering a 3D scene on the computer, the location of the "eye" is defined as one of the
parameters that determines the viewing volume, and subsequently which objects within the scene
will be visible, i.e. within the field of view. To mimic the way the eyes view 3-dimensional
objects in the real world, the left and right eye scene renderings have eye positions with a lateral
disparity equal to an average interpupillary distance (distance between the eyes) for the viewer.
The images are kept separate and distinct by passing each projected image through a polarizing
filter (one polarized orthogonal to the other). A viewer observes the images through glasses,
similarly polarized. Left and right eye information is only seen by each appropriate eye to create
the illusion of depth.

Unfortunately the process of polarization is very lossy with each pass through a polarizing filter
transmitting only 25% of the incident light. Since the process involves two passes through the
filter material for each image, only a small percentage of the original light is available to the
viewer.

To compensate for the light loss and to preserve the polarization of the incident light on the
screen, a special screen construction technique is used in the 3D stereoscopic display installation
at AFRL/DF. The substance of the screen is an acrylic panel, 88" x 66" x VA" thick. The rear
projection surface is etched with a Fresnel surface that creates an image plane and at the same
time preserves the polarization of the incident light. The front surface of the screen contains a
lenticular lens pattern, providing an apparent screen gain of 5, which offsets a portion of the
polarization losses. One artifact of this specialized screen construction is that, because the image
plane and lenticular surface are not coincident, the absolute resolving power of the- screen is
limited. In this particular instance, pixels of 7i6" and larger are individually resolvable.

In the original installation, the images were provided by a pair of CRT projectors whose
projected resolution was 1280 x 1024 pixels with a light output of less than 100 lumens. In order
to maintain a minimally usable screen illumination of approximately 2-3 foot-lamberts (roughly
the brightness of a drive-in movie image), the maximum image size was limited to 40" x 30". As
the images passed through the screen with its 7i6" pixel resolution, overall resolution was
reduced to 640 x 480 pixels.

The current installation has replaced the CRT projectors with LCD-based units that resolve 1024
x 768 pixels with a light output of at least 1200 lumens. The increased intensity permitted
extending the image to the full 88" x 66" dimensions of the screen while improving the apparent
screen illumination to an estimated 16 foot-lamberts. The 88" wide image produces a pixel size
of .085" which is not noticeably affected by the Vie" resolving capability of the screen.

The current installation, therefore, improves image area by a factor of 4 + (40" x 30" to 88" x
66"), improves image brightness by a factor of 8 (2 to 16 foot-lamberts), and improves resolution
from 640 x 480 to 1024 x 768 pixels.

3/4 View Front View

Figure 2a. Overlaid Configuration

Figure 2b. AFRL/EF's Stereoscopic 3D Display System

Primary concerns with implementing an overlaid stereoscopic display are assuring accurate color
balance, vertical and horizontal linearity, and proper alignment of the left and right eye displays.
This ensures effective fusing of the left and right eye stereo pairs into what your brain will
interpret as a single, coherent, 3-dimensional image.

2.2 Tiled Display

A tiled display consists of n x m distinct display devices, such as video projectors, each
displaying a portion of an entire screen area (Fig. 3). The intent is to produce a very high-
resolution, seamless, large screen display. Again accurate color balance and proper alignment of
the display devices are crucial. Variations in chromaticity and luminosity among tiles can cause
inconsistency in color and brightness across the screen. Vertical or horizontal disparity of the
tiled images can cause segmentation of objects at the seams. Gaps between image tiles can cause
discontinuity of the imagery.

3/4 View Front View

Figure 3a. 1 x 3 Tiled Configuration

Figure 3b. AFRL/IF's Interactive DataWall

The rationale for this type of display is fourfold. First, a large screen display provides multiple
users with a common display medium, coordinating data from multiple workstations and
monitors. It provides a large canvas to present multiple windows with various information.
Windows can be spread out instead of continuously bringing the active window to the
foreground. It provides a global view of the information space. This allows the users to make
comparisons and find relationships between items. It also makes collaboration within a localized
working environment much more effective.

Second, high-resolution is desired because AFRL/IF is researching the Interactive DataWall for
military Command and Control, which requires the display of various kinds of data. This data
can include terrain models overlaid with computer-generated imagery, digital maps, textual
information, as well as live and recorded video. Although a conventional projection system
allows a wide range of image sizes, and could provide the necessary large screen display
capability, the display quality will inevitably decrease as the display area increases and pixels
become larger. The DataWall is intended to be used both at a distance and at close range. A large
screen display's utility is significantly reduced if imagery loses important detail or text becomes
difficult to read at close proximity. Even today, large paper maps with acetate overlays are used
for mission planning in the command centers. Therefore, near paper map quality is required to
effectively replace conventional data sources with electronic media.

Third, tiling several images either horizontally and/or vertically provides a wider field of view,
and allows displays of unlimited aspect ratios (i-e- the height to width ratio) to be created. Simply
increasing a projector's display area will introduce pixelation problems, and will decrease the
brightness of the image. In a tiled configuration each projector is displaying a small portion of
the entire display area. The combined image is much brighter than a single projector displaying
an image across the same screen area. By limiting each projector's display area, the projected

light is more concentrated. Direct view displays are much brighter and less susceptible to
ambient light problems than projection systems. However, implementing a single element direct
view display creates a myriad of new problems. Scaling already bulky CRTs or flat panels is
neither practical nor economical. Scaling up CRTs beyond a 40" diagonal would require glass
envelopes that are heavy and high voltages that are radiation hazards. Fabrication of very large-
scale flat panels would require the development of very expensive equipment [1]. Larger flat
panel displays are becoming available, but are far from the resolution capacity of the CRT
systems. In addition, the state-of-the-art in display technology is limited to devices that are only
capable of resolutions on the order of 2500 x 2000 pixels. Tiling the highest resolution display
devices in an n x m configuration increases the display resolution n x m-fold.

Last, projectors were utilized to minimize the seams between the image tiles. A common
implementation for tiled displays is to use direct view monitors. All currently available direct
view monitors have frames that enclose a certain amount of necessary electronics surrounding
the display screen. Therefore, there is no way to effectively abut direct view display elements
without having a gap between them.

AFRL/IF has successfully implemented a number of DataWalls each consisting of three
horizontally tiled video projectors. The first implementation, which serves as a development
system, uses CRT projectors each displaying 1600 x 1200 pixels for a total display resolution of
4800 x 1200 pixels across a screen area 12' x 3' (Fig. 3). This far exceeds the state-of-the-art in
single element display systems. An SGI Onyx workstation with three Reality Engines drives the
display. In addition, each projector has a video bandwidth capacity approaching 2500 x 2000
pixels, which could yield a future DataWall resolution of 15 million pixels.

In the interest of developing a less costly alternative to the SGI-based DataWall, a Sun
workstation based version was successfully implemented. Again three CRT projectors were
utilized but at a slightly reduced resolution. Each projector displays 1280 x 1024 pixels for a
total display resolution of 3840 x 1024 pixels across a screen area 12' x 3'. One dual processor
Sun Ultra SPARC 60 workstation and two Ultra SPARC 30 workstations drive the display.

To provide a deployable version of the Interactive DataWall to support the testbed for the
forward deployable element of the Configurable Aerospace Command and Control (CACC)
Integrated Technology Thrust Program (ITTP), a Sun workstation based Deployable Interactive
DataWall (DID) was implemented. One dual processor Sun Ultra SPARC 60 and two Ultra
SPARC 10s drive this display. It is housed in an extensively modified Air Force S-530 A/G
Standard Rigid Walled shelter, with its own Tactical Generator Set and Environmental Control
Unit. Due to the unique, short-throw, rear-projection requirements, three LCD projectors with
special short-throw lenses are used. In this configuration, each projector displays 1024 x 768
pixels for a total display resolution of 3072 x 768 pixels across a screen area 9' x 2VA (Fig. 4). It
should be noted that even in this most reduced resolution configuration, the total display
resolution still exceeds the state-of-the-art in single element display systems.

Figure 4a. The Deployable Interactive DataWall (DID)

Figure 4b. The DID Interior Components

A significant challenge of producing a seamless display is ensuring the projectors are properly
aligned with correctly balanced color and brightness across the individual projector images. It
should resemble a monolithic display and look like a single continuous image; not a mosaic of
varying colors and brightness caused by chromaticity and luminosity variations. Nor should there
be segmented lines or gaps between the tiles caused by inaccurate alignment.

3. Related Work

Overlaid and tiled display systems have been in use, albeit limited, for the past several years.
However, little has been done to develop test patterns for these special display configurations.
Test patterns for determining display system image quality have been developed and used for the
past several years. Some of the display metrics they were designed to test includes linearity,
color, sharpness/resolution, contrast, video artifacts, and focus. They were not designed with
composite display requirements in mind, however, and are better suited to single element display
systems.

3.1 GIF & JPEG Test Patterns

In addition to the internally generated test pattern mechanisms found in commercial display
systems described earlier, test patterns, typically in Graphical Image Format (GIF) and Joint
Photographic Experts Group (JPEG) formats are also available. What they provide are static
images such as grid patterns, line patterns, or color bars. Although most could be used in a
composite display system, there are more effective images that could be used in the alignment
process. In the case of a tiled display they do not provide the necessary imagery along the seams
for color balancing and alignment. Their greatest shortfall is the lack of interactivity. In a
composite display configuration, the ability to change image characteristics such as colors and
line widths provides significant improvement over the static patterns.

3.2 Pattern Generator Hardware

Special hardware is also available that can be installed as an add-on board to your image
generation computer hardware that provides video test signal/pattern generation. They provide
similar functionality to the GIF and JPEG test patterns, in that they are static patterns designed to
test and measure the performance of video production equipment. Typical uses include video
signal quality control and management, video inspection and testing, maintenance/calibration,
and troubleshooting & repair. The same deficiencies apply with these types of test environments.
They do not allow interactive changes to the images and are not really designed for aligning
multiple display elements.

4. Interactive Test Pattern Generator Software

4.1 Silicon Graphics, Inc. Graphics Library Version

The first version of the interactive test pattern generation application was designed for the SGI
workstations that were being utilized to drive both the DataWall and overlaid stereoscopic
displays in the ADII visualization facility. Seven patterns were developed to address the above
issues, and are all accessible through an interactive C program that implements Graphics Library
(GL) function calls to render each screen pattern. Each pattern can be displayed on systems of
varying resolutions. The resolution is not something that needs to be explicitly specified for any
particular display; it is a screen characteristic that is obtained through a GL function call internal
to this application. There are no minimum or maximum resolution limitations to the application
[4].

The first implementation of the DataWall at AFRL/BF prompted the need for an alignment and
color balancing test environment. The test patterns provided a significantly improved method for
aligning the three projectors and effectively balancing the color across the entire display area.
This tool has been evolving as the DataWall evolves, with improvements made as additional
needs were identified. With the original DataWall implementation being SGI-based, the GL
programming approach to the test pattern generator development served the system well.

4.2 X Windows-Based Version

The migration of the DataWall to a Sun-based implementation drove the requirement for a more
generic test pattern generator. GL is a set of graphics libraries specific to the SGI computer
platform. The X Windows-based application provides a superset of the test patterns provided by
the SGI-based application. The new application uses the X primitives to generate all graphics
rather than the SGI GL functions. This application generates the following patterns: Grid,
ZigZag, Grayscales, ColorScales, WhiteBorders, VerticalLines, ColorWheel, VerticalLadder,
HorizontalLadder, 4X128X128Blocks, LeftRightTickMarks, Circle, Ellipse and FlatField. To
generate these patterns, the application uses twelve colors (Table 1) and nineteen grayscale
levels. Each color component is 16 bits and intensities are expressed as percentages of the
maximum value for an unsigned 16 bit integer (i.e. 65536). The grayscales used in this
application are selected linearly from the range between black (0% red, 0% green, 0% blue) and
white (100% red, 100% green, 100% blue). Grayscales have the same intensity value for each of
the three color components (i.e. red, green & blue). Collectively, these patterns are intended to
aid the video engineer in focusing, aligning, color balancing and performing other adjustments to
high resolution, projected displays.

10

X Windows Color Name
Red

Intensity
Green

Intensity
Blue

Intensity
Red (red) 100% 0% 0%

OrangeRed (orange red) 100% 0% 50%
Magenta (magenta) 100% 0% 100%

MediumSIateBlue (medium slate blue) 50% 0% 100%
Blue (blue) 0% 0% 100%

SlateBlue (slate blue) 0% 50% 100%
Cyan (cyan) 0% 100% 100%

SpringGreen (spring green) 0% 100% 50%
Green (green) 0% 100% 0%

Chartreuse (chartreuse) 50% 100% 0%
Yellow (yellow) 100% 100% 0%

Coral (coral) 100% 50% 0%

Table 1. Pattern Colors
Note: A color name enclosed in ()'s is simply an alternate name for the same color.

4.2.1 Grid

The Grid pattern is the default pattern. It is the initial pattern displayed when the application
executes. The pattern consists of 21 evenly distributed vertical white lines and 17 evenly
distributed horizontal white lines on a black background. The width of the lines is variable from
one to ten pixels (Fig. 5). This pattern was designed to determine the level of pincushioning,
keystoning, and horizontal or vertical linearity distortions present in a displayed image (Fig. 1).
The squares that compose the grids should appear square. If the outside edges of the image are
sloped and/or curved, there are keystoning and/or pincushioning distortions. If the squares appear
to become more rectangular towards the
center or the outside of the image, either
horizontally or vertically, there is a
linearity problem. This pattern can be
used for aligning tiled as well as overlaid
stereoscopic displays. Although this
pattern can be used effectively to adjust
the types of distortions described above, it
can overwhelm the eye with information
and, as a consequence, can be difficult to
use. It is easier to make the linearity
adjustments using the VerticalLadder and
HorizontalLadder patterns, which will be
discussed later, and use the Grid pattern to
confirm the settings.

Figure 5. Grid

11

4.2.2 ZigZag

Figure 6. ZigZag

The ZigZag pattern assists in horizontally
aligning a tiled display, but was also
designed to handle alignment of future
vertically tiled displays. The pattern consists
of a black background with edge zigzag
patterns (Fig. 6). When these patterns are
abutted in a tiled configuration, they produce
a continuous zigzag pattern across adjacent
screens along the seams (Fig. 7). Each
zigzag consists of seven adjacent lines, each
one pixel wide and one of the following
colors: red, green, blue, cyan, yellow,
magenta and white. The lines can vary in
width from one to ten pixels.

Figure 7.2 x 2 ZigZag
Note: The seams depicted serve only to delineate each projector's screen area.

The goal of such a tiled display is to avoid any seams.

12

4.2.3 Grayscales

The Grayscales pattern is two rows of 16
equal-sized, adjacent, vertical rectangular
areas. Each rejbtangle is flooded with one of
the grayscale levels available to the
application. The sole difference between
the top and bottom rows is a reversal of the
grayscale level presentation order (Fig. 8).
Because the full spectrum of grayscales
from white to black consists of equal
amounts of red, green and blue, it was
determined that a pattern consisting of
grayscale bands could provide an effective
color-balancing tool.

4.2.4 ColorScales

Figure 8. Grayscales

The ColorScales pattern is two rows of 12
equal-sized, adjacent, vertical rectangular
areas. Each rectangle is flooded with one of
the standard colors available to the
application. The sole difference between the
top and bottom rows is a reversal of the
color presentation order. The colors used
are red, orange red, magenta, medium slate
blue, blue, slate blue, cyan, spring green,
green, chartreuse, yellow and coral (Fig. 9).
This pattern is used for color balancing.

Figure 9. ColorScales

13

4.2.5 ColorWheel

The ColorWheel pattern contains 12
polygons flooded with one of the colors
available via the internal application
colormap. At the center of the color wheel
is a white circle. The colors used are red,
orange red, magenta, medium slate blue,
blue, slate blue, cyan, spring green, green,
chartreuse, yellow and coral (Fig. 10). This
pattern is used for color balancing and can
be rotated to align and compare colors along
adjacent tile seams.

Figure 10. ColorWheel

4.2.6 WhiteBorders

The WhiteBorders pattern is a series of eight concentric rectangles. All rectangles are displayed
using 'n' pixel wide white lines on a black background. The line width is variable from one to

ten pixels. The outermost rectangle has a
height equal to the vertical resolution and a
width equal to the horizontal resolution of the
display. The height and width of each
subsequent rectangle equals the height and
width of the previous rectangle reduced by
four times the line width. The origin of the
outermost rectangle is the pixel in the top right
corner (i.e. row = 0 and column = 0). The
origin of subsequent rectangles is offset in
both the x and y dimensions by two times the
line width (Fig. 11). This pattern was designed
to ensure each projector is displaying all
pixels around its border and is useful for

Figure 11. WhiteBorders evaluating resolution.

14

4.2.7 VerticalLines

The VerticalLines pattern is a series of
vertical lines filling the display area. All lines
are white on a black background. Each line is
n pixels wide and is spaced n pixels from
adjacent lines. The line width and spacing is
variable from one to ten pixels (Fig. 12). The
intent of this pattern is to test the capacity of
the display system to resolve very high-
resolution images.

I 1 ifi 11 I

I 1
ill

i nm

III

111 III
■I

1 ■L 1

n

Figure 12. VerticalLines

4.2.8 VerticalLadder

The VerticalLadder pattern consists of a rectangular border with a horizontal line connecting the
midpoints of the two sides of the rectangle and a centered, vertical ladder. The ladder portion of

 the pattern is comprised of two parallel,
vertical lines connecting the top and bottom
rectangle borders with endpoints spaced
equidistant from the midpoint of each border
(Fig. 13). Initially, this pattern is generated
with red lines on a black background but the
foreground color (i.e. lines) can easily be
modified via a foreground color selection
window (refer to Section 7.1). This pattern is
used for adjusting vertical linearity. It is much
easier to use than the Grid pattern since it
provides required information in a much less
distracting manner.

Figure 13. VerticalLadder

15

4.2.9 HorizontalLadder

The HorizontalLadder pattern is a rectangle
with a vertical line connecting the midpoints
of the top and bottom of the rectangle and a
centered, horizontal ladder. The ladder
portion of the pattern is comprised of two
parallel, horizontal lines connecting the left
and right rectangle borders with endpoints
spaced equidistant from the midpoint of each
border (Fig. 14). Initially, this pattern is
generated with red lines on a black
background but the foreground color (i.e.
lines) can easily be modified via a
foreground color selection window (refer to
Section 7.1). This pattern is used for
adjusting horizontal linearity. It is much
easier to use than the Grid since it provides
required information in a much less
distracting manner.

Figure 14. HorizontalLadder

4.2.10 4X128X128BIocks

The 4X128X128Blocks pattern is a compound
pattern made up of nine 128 pixel by 128 pixel
blocks distributed on the display area. The
nine blocks are displayed in three rows of
three blocks. Each of these blocks is made up
of four 64 pixel by 64 pixel sub-blocks. Each
sub-block is made up of a pattern of varying
width (one to three pixels) horizontal and
vertical white lines on a black background.
Starting with the upper left sub-block and
moving clockwise, the pattern is rotated 90
degrees for each subsequent sub-block (Fig.
15). This pattern is used primarily to aid focus
adjustments.

Figure 15.4X128X128Blocks

16

4.2.11 LeftRightTickMarks

The LeftRightTickMarks pattern is a rectangle with alternating short and long tick marks starting
at the left and right borders and extending towards the middle of the rectangle. Short tick marks
are 64 pixels in length while long tick marks are 128 pixels in length. There are 15 tick marks
(eight short and seven long) along each border. The topmost tick mark is short and they alternate
from long to short until all 15 tick marks are displayed (Fig. 16). The line forming the
rectangular border starting at a short tick mark and extending to the next long tick mark is two
pixels wide, otherwise, the rectangular border is one pixel wide (Fig 17). Alternating the border
width aids in adjusting the position of adjacent tiled projections to one pixel precision.

Figure 16. LeftRightTickMarks

Figure 17. Close-up of LeftRightTickMarks
Note: 1 pixel indentation along border

4.2.12 Circle/Ellipse

The Circle/Ellipse pattern is a window bordered by a white rectangle with a white circle or
ellipse centered within the rectangle (Fig. 18 & Fig. 19). This pattern is used as a test to
determine whether the display uses a square or rectangular pixel. This pattern is most useful for
post adjustment distortion detection since the human eye is very sensitive to spherical distortions.

17

Figure 18. Circle Figure 19. Ellipse

4.2.13 FlatField

The FlatField pattern floods the entire drawing
area with a single color (Fig. 20). Initially, the
color is an 18% gray but it is alterable via a
pop-up window (refer to Section 7.1)
containing a slider for each RGB component.
This pattern is used to aid color balancing. It is
also useful for adjusting dynamic brightness
on projectors supporting such adjustments.

4.2.14 DIDspecial

Figure 20. FlatField

The DIDspecial pattern is a red rectangle with a horizontal line and a vertical line forming a
perpendicular intersection at the center, and alternating short and long tick marks. The tick marks
start at the left and right borders and extend towards the middle of the rectangle. Short tick marks
are 64 pixels in length while long tick marks are 128 pixels in length (Fig. 21). The line forming
the rectangular border starting at a short tick mark and extending to the next long tick mark is
two pixels wide, otherwise, the rectangular border is one pixel wide (Fig. 22). Alternating the
border width aids in adjusting the position of adjacent tiled projections to one pixel precision.

18

This pattern is similar to the LeftRightTickMarks pattern, but was designed for the LCD
projectors used in the Deployable Interactive DataWall (DID) configuration. Because the LCD
projectors are lower resolution the image consists of fewer tick marks. Also, since these
projectors do not have electronic geometry adjustments, the center vertical line is used to
determine true vertical, as the physical pitch of each projector is adjusted. The center horizontal
line is then used to determine true horizontal, as the physical yaw of each projector is adjusted.
The horizontal line is also used along with the tick marks to properly align all the projectors
along the horizontal.

Figure 21. DIDspecial

Figure 22. Close-up of DIDspecial
Note: 1 pixel indentation along border

4.2.15 DotBox

The DotBox pattern consists of two distinct images that are designed to be superimposed across
the same screen area in an overlaid configuration. One image has a red border and five rows of
five equally spaced green dots. Each dot is two pixels by two pixels. The other image has a green
border and five rows of five equally spaced red boxes. Each box is six pixels by six pixels. On an
overlaid projection system, one projector displays the dot image while the other projector
displays the box image (Fig. 23-25). This pattern is designed to aid in adjusting the alignment of
overlaid projections by centering the dots inside the boxes, and matching the image borders.

19

Figure 23. DotBox

Figure 24. Close-up of Upper Left Comer of DotBox
Note: Yellow border from red and ereen borders beine overlaid

Figure 25. Close-up of One
Properly Aligned dot-box

4.2.16 GrayScalesStereo

The GrayScalesStereo pattern consists of two rows of 32 equal-sized, adjacent, vertical
rectangular areas. Used in an overlaid configuration, one projector displays the top row, while
the other projector displays the bottom row. Starting from the rightmost rectangle, each rectangle
is flooded with one of 16 grayscale levels from black to white, then in reverse order from white
to black. The main menu (refer to Section 7.1) contains a buffer submenu for displaying the top
row only (Fig. 26), the bottom row only, or both rows of this pattern (Fig. 27). This pattern is
designed to aid gamma matching of different projectors in an overlaid configuration.

20

Figure 26. GrayScalesStereo (Top Row Only) Figure 27. GrayScalesStereo (Both Rows)

4.2.17 CoIorScalesStereo

The CoIorScalesStereo pattern consists of two rows of 24 equal-sized, adjacent, vertical
rectangular areas. In an overlaid configuration, one projector displays the top row, while the
other projector displays the bottom row. Starting from the rightmost rectangle, each rectangle is
flooded with one of 12 colors available to the application, then the same 12 colors in reverse
order. The main menu (refer to Section 7.1) contains a buffer submenu for displaying the top row
(Fig. 28), the bottom row, or both rows of this pattern (Fig. 29). This pattern is designed to aid
color matching of different projectors in an overlaid configuration.

Figure 28. CoIorScalesStereo (Top Row Only) Figure 29. CoIorScalesStereo (Both Rows)

21

4.2.18 HorizontalGrayScales

The HorizontalGrayScales pattern consists of
nine horizontal, rectangular areas separated by
black rectangular buffer zones. The topmost
rectangle is flooded with white, followed by
20% gray, 40% gray, 60% gray, white, 60%
gray, 40% gray, 20% gray and white (Fig. 30).
This pattern is designed to aid gamma
matching of adjacent, horizontally tiled
projections.

Figure 30. HorizontalGrayScales

5. Application Execution

The remaining sections describe how to execute the application, use the interfaces to interact
with the patterns, recompile the application if changes are required, and add new patterns. It also
describes how the source code was developed.

The test pattern generation executable (i.e. binary) is named niain-c. To execute this application,
the user should set the current working directory to the directory where the executable and an X
resources definition file named Main-c are located. Next, the user should execute the X utility
named xrdb to load the X resource information into the X server database (e.g. xrdb -load
Main-c). Finally, to execute the test pattern generation application, simply type main-c and
<return>. The application should begin execution and the full display area should be filled with
the default Grid pattern.

6. X Resource File

The Main-c file contains X resource definition information used to provide an easily
customizable look and feel to the user interface. The file contains font and color settings for the
user interface. To use the X resource settings, simply type xrdb -load Main-c at the UNIX
prompt. The intent of this file is not to include every possible customizable option but rather to
demonstrate how a file of this type is used. For instance, this particular file contains a font
definition that prevents the text on the pop-up menu from being clipped on systems where the
default font is larger than the menu was designed to handle. Although the clipping does not
affect execution, it is visually more pleasing to prevent it.

22

7. The Interfaces

7.1 Graphical User Interface (GUI)

When the application executes, the default Grid pattern appears in a borderless XllR6/Motif
window on the display. The window utilizes the maximum resolution of the screen. Depressing
the right mouse button posts a pop-up main menu that allows the user to modify the current
pattern, including increasing/decreasing the line width, rotating the ColorWheel, modifying the
foreground color, displaying a different pattern, selectively displaying portions of certain
patterns, or exiting the application. Dependent upon the currently displayed pattern, certain menu
options will not be accessible and will appear grayed out. The menu options available to each
pattern are represented below (Table 2).

Menu Option
Pattern ^,

Line
Width Rotate

FG Color
Selection Pattern Buffer Exit

Grid X X X

ZigZag X X X

Grayscales X X

ColorScales X X

ColorWheel X X X

WhiteBorders X X X

VerticalLines X X X

VerticalLadder X X X

HorizontalLadder X X X

4X128X128Blocks X X

LeftRightTickMarks X X X

Circle X X

Ellipse X X

FlatField X X X

DIDspecial X X X

DotBox X X

GrayScalesStereo X X X

ColorScalesStereo X X x

HorizontalGrayScales X x 1

Table 2. Pattern to Menu Option Mapping

The Line Width menu option has a submenu to either increment or decrement the line width. The
Rotate menu option has a submenu to rotate the ColorWheel pattern either clockwise or
counterclockwise. The FG Color Selection menu option causes a pop-up Foreground Color
Selection window to appear on the display that contains a sample color widget, three slider bars
and two buttons. The sample color widget displays the color corresponding to the current slider
bar settings. Each of the slider bars represents one of the three color components: red, green &
blue (RGB). Moving a slider bar changes the color component level and updates the sample
color widget. The two buttons are labeled Apply and Dismiss. The Apply button updates the
default foreground color (e.g. lines) for any pattern allowing foreground color modification. The

23

Dismiss button simply closes the Foreground Color Selection window. The Pattern menu option
has a submenu to change the current pattern to any one of the available test patterns. The Buffer
menu option has a submenu to selectively display the top, bottom, or both portions of the
GrayScalesStereo or ColorScalesStereo patterns. Finally, the Exit menu option will terminate the
application. The GUI was designed using ICS's BX GUI software tool. Although it is not
mandatory, all modifications to the user interface should be accomplished via BX since it is easy
to make a mistake when editing the required files directly.

7.2 Keyboard

Whenever a given pattern is displayed, specific keystrokes are recognized and predefined actions
are executed. The following keys are recognized: Up-Arrow/L/l, Down-Arrow/D/d, Left-
ArrowlPIp, Right-Arrow/N/n, Rlr, U, and C/c. Please note that the "/" character is used as a
separator within a group of keys. Pressing any key from the group results in a common action.

Up-Arrow/L/l

Pressing the Up-Arrow key (or alternately either the upper or lower case L key) increases the line
width by 1 pixel for any pattern allowing modification. If the line width exceeds ten pixels, it is
reset to one. Patterns allowing line width modification include Grid, ZigZag, WhiteBorders and
VerticalLines.

Down-Arrow/D/d

Pressing the Down-Arrow key (or alternately either the upper or lower case D key) decreases the
line width by one pixel for any pattern allowing modification. If the line width becomes zero, it
is reset to ten. Patterns allowing line width modification include Grid, ZigZag, WhiteBorders and
VerticalLines.

Left-Arrow/P/p

Pressing the Left-Arrow key (or alternately either the upper case P or lower case p key)
decrements the current pattern index. If the index becomes negative, it is reset to the largest
defined internal application index. The application displays the pattern whose internal
application pattern number matches the new index. The internal application pattern number is a
predefined, sequential number defined for each of the patterns used within the application.
Internal application pattern numbers are defined using BX and are stored in the creation-c.h
header file.

24

Right-Arrow/N/n

Pressing the Right-Arrow key (or alternately either the uppercase N or lower case n key)
increments the current pattern index and displays the pattern whose internal application pattern
number matches the new index. If the index equals the constant MAXPATTERNS, it is reset to
zero, initiating a new cycle through the patterns. Internal application pattern numbers are defined
in the creation-c.h header file generated by BX.

Re-

pressing the R key increments the starting color index for the ColorWheel pattern. If the index
exceeds the constant MAXCOLORS, it is reset to zero. The effect is a rotation of the
ColorWheel.

U and C/c

Pressing the upper case U key toggles the screen capture capability. Initially, the screen capture
capability is inaccessible. Once the screen capture capability has been toggled on, pressing either
the upper or lower case C key will spawn a subprocess executing the xwd utility to capture the
current pattern. By convention, the output file is named captured_pattern_XXX.xwd where XXX
is the internal application pattern number. Internal application pattern numbers are defined in the
creation-c.h header file generated by BX. This capability is useful for capturing screen-dumps of
the patterns so that they can be used in documents and/or printed.

8. Standards-Based Software Development

The source code was developed using the C programming language and XI lR6/Motif. The user
interface was developed using the BX GUI tool. The user interface definition is stored in a user
interface language (UIL) data file. BX allows the user to define the user interface and then
generate C source code to build the application.

Although not an initial requirement, it soon became apparent that this application will be hosted
on more than the Sun/Solaris platform for which it was conceived. To that end, every effort has
been made to make this application standards-based so that it may be used on multiple platforms
with minimal alteration.

25

9. Source Code

Some of the test pattern application source code was auto-generated by BX, some is a modified
version of BX auto-generated code and the remainder was developed.

9.1 BX (Builder Xcessory) Generated

9.1.1 main-c.c

The main-c.c file contains the X Windows code to initialize the user interface and to enter the
main X loop. The BX GUI tool generates most of the code contained within this file. There are
numerous, well identified sections within the source code where a programmer can add code to
perform application specific tasks.

9.1.2 creation-c.c

The creation-c.c file contains the routines to create the user interface components. The BX GUI
tool generates all of the code contained within this file. This file should not be modified except
via BX.

9.1.3 creation-c.h

The creation-c.h file contains pattern number macro definitions. The internal application pattern
numbers are non-negative and sequential. They provide the programmer with a suitable
substitute for referencing patterns via integer literals. These macros are used within the code as
tags in a switch statement which handles displaying the desired pattern. These macros were
defined and generated using the BX GUI tool and all modifications should be performed via the
BX GUI tool.

9.1.4 callbacks-c.c

The callbacks-c.c file contains the callback stubs associated with the widgets specified when
building the user interface. The BX GUI tool generates most of the code contained within this
file. Since the callbacks are initially stubs, the programmer must add the source code to perform
the expected response to the event triggering the callback. This file has been extensively
modified.

26

9.1.5 datawall.uil

The datawaliuil file contains the user interface language (UIL) code that defines the layout of
the user interface including the drawing area and pop-up menu. UIL code is a platform
independent industry standard for defining user interfaces. This file is required for all
modifications to the user interface. After the required changes are completed using BX, the
programmer will generate new C code. The C code is recompiled and relinked to build the new
executable. All code contained within the UIL file is generated by BX and should never be
modified without using BX.

9.1.6 bxutils-cc

The bxutils-cc file contains utility routines generated by the BX GUI tool and they are used in
the auto-generated code. Most of these routines aid manipulation of compound strings, pixmaps
and widgets. These routines are not used outside the auto-generated code. All code contained
within the bxutils-cc file is generated by BX and should never be modified without using the
BX.

9.2 Other

9.2.1 utilities.c

The utilities.c file contains routines for generating the graphics patterns and routines supporting
the generation of patterns. This file contains the RefreshDisplayArea() routine which provides
access to all patterns via a switch statement. The switch control variable is used to determine
which pattern is displayed. Within the RefreshDisplayArea() routine, there is control code which
determines which menu items are available for selection.

9.2.2 event_handlers.c

The eventjiandlers.c file contains all source code for the event handlers used by the application.
Currently, there are event handlers for keyboard and mouse button events generated within the
drawing area of the application. Each keyboard event decodes the keycode and maps specific
keycodes into actions. See section 7 of this report for a more thorough discussion.

27

9.2.3 datawalLh

The datawalLh file contains definitions for all constants and functions not defined via BX. All
color specifications are defined in accordance with the values used in the source code for the
SGI/GL-based application.

10. Conventions

10.1 Naming

An application, such as this, is a work-in-progress. It is never truly complete since it is very
probable that new patterns will periodically be added. Despite the fact that this application was
developed on-the-fly, code maintenance was always a consideration.

In an attempt to minimize global information, yet support access to required data, numerous
convenience functions were written to provide access to specific data items such as widget
identifiers, color & grayscale information, and indices. All routines used to store or retrieve such
information have function names beginning with GetSet. The remaining portion of the function
name is some word or phrase to uniquely identify the type of information this function was
intended to handle. For example, the convenience function to store and retrieve the drawing area
widget is named GetSetDrawingAreaWidget(). All callback routines have function names with
the suffix CB. The source code for all callback routines is located in the callbacks-c.c file.

10.2 Graphic

To minimize the effect of the Xlib graphics library algorithms on the displayed graphics output,
most n-pixel width lines are drawn as n 1-pixel width lines rather than as a single n-pixel width
line. Although this can add to rendering overhead somewhat, it ensures the image is rendered
correctly. If the geometry of the displayed pattern appears distorted, the algorithm most
assuredly can be eliminated as a potential source of the problems. It should be noted that the
ZigZag pattern is an exception to this convention.

10.3 Error Handling

10.3.1 Informational

During the course of normal execution, if certain conditions or non-fatal errors occur an
informational window is displayed. A message is displayed requiring user input to dismiss the

28

informational window. One common use of informational windows is to report attempts to
access options not supported for the currently displayed pattern.

10.3.2 Fatal

Under certain circumstances, such as being unable to initialize the application colormap, an error
message is displayed in the terminal window and execution halts.

11. Building Application

11.1 Makefile

A makefile for this application is provided for ease of recompiling after modifications. All
required source code files are specified within the makefile. The CC variable within the makefile
identifies the compiler the programmer has chosen. In our case, the SparcWorks ace compiler is
used.

To build the application, create a work directory and copy the makefile and all source code to
that directory. To use the make utility to build the application, simply set your working directory
to where the source code and makefile are located then type make. Please note that slight
modifications of the makefile may be required when rehosting the application to a new system.

11.2 Environment Variables

The UNIX environment variables required by this application are limited primarily to those
required to perform the compilation and linking. The make utility, ace compiler, xwd utility and
xrdb utility must be located somewhere within the PATH specification. The libraries must be
located somewhere in the LD_LIBRARY_PATH specification.

12. Adding A New Pattern

The following steps describe the procedure to add new patterns to this application. A critical
portion of this procedure requires experience using the BX GUI tool. It is assumed that the user
has changed the working directory to the location of the source code including the makefile and
UILfile.

29

1) Requirements Definition

Determine the requirements of the new pattern and choose a meaningful name. For the
remainder of this procedure, let's assume you want to add a new pattern with a white
border at the margins of the drawing area and blue diagonal lines connecting the comers.
Let's also assume we have chosen to name the new pattern BlueDiagonals.

2) Define The User Interface

Execute the BX GUI tool binary file (i.e. bx) and open the UIL file named datawall.uil.
There are several tasks to be performed using bx. Create an integer constant for the new
pattern and use an all upper case version of the pattern name chosen in Step #1 of this
procedure as the name. In our example, the new constant will be named
BLUEDIAGONALS. The new constant should be set to the current value of a previously
defined constant named MAXPATTERN. Increment the value of MAXPATTERN by
one. Add a new button to the pattern pull-down menu. Modify the newly created button.
Enter "Blue Diagonals" in the labelString resource and enter
"PatternTypeCB(BLUEDIAGONALS)" in the activateCallback resource. Save the UIL
file and generate the C source code. Exit from bx.

3) Add Routine To Generate New Pattern

Edit the utilities.c file to add the routine to generate the new pattern. Most patterns have
the same basic requirements, therefore, it is often easiest to copy an existing routine and
modify it as necessary to add the code for specific requirements. In our example, let's
copy the WhiteBorders() routine and name the new routine BlueDiagonals(). Next,
remove unnecessary code from the copied routine and add the new code to generate the
pattern. Adding the new code requires knowledge of C, XllR6/Motif programming and
Xlib functions. Finally, add a declaration for the new routine to the list of function
declarations in the datawall.h header file.

4) Add New Case Clause to Switch

Next, modify the RefreshDrawingArea() routine to add a new case clause to the switch
statement used to select the appropriate pattern to display. The new case clause should be
something like this:

/* Use the constant created using bx and used in the
activateCallback resource as the tag field in the case
clause */

case BLUEDIAGONALS:
BlueDiagonals();/* This line executes the newly */

break; /* created routine. */

30

The case clause you would actually use may be somewhat more complex than the one
shown above depending upon the nature of the new pattern. You should study this
portion of the code to fully understand it prior to making any modifications.

51 Rebuild The Application

Clean up the directory prior to a rebuild by executing the make utility with the clean
option (i.e. make clean) and then perform the rebuild by executing the make utility
without options from the UNIX prompt. The make utility will rebuild the executable in
accordance with the information and rules specified in the makefile. During the rebuild,
the user can monitor progress by reviewing the output information from the utility.

13. Summary

This interactive test pattern environment has become an invaluable tool for frequent in-house
video projector fine tuning and preventive maintenance actions. The test patterns have been
effectively used to align and color balance the ADE video projectors in both an overlaid
stereoscopic configuration and tiled DataWall configurations. In addition to providing a much
more accurate alignment method, it is estimated to have reduced the workload required by more
than one half. On several occasions the projector systems required contractor on-site
maintenance actions. The contractor's preference of the test pattern environment over the internal
projector test patterns attests to the utility and flexibility of the developed environment.

The first implementation of the Interactive DataWall at AFRL/IF prompted the need for an
alignment and color balancing test environment. The test patterns provided a significantly
improved method for aligning the three projectors and effectively balancing the color across the
entire display area. The VerticalLines pattern tested the capacity of the display system to resolve
very high-resolution images, to see if it was possible to resolve these lines at 1600 x 1200 pixels
per projector. This was to gauge the benefits of investing in a frame buffer that would allow us to
drive the projectors at their full capacity of 2500 x 2000 pixels. Our preliminary results revealed
an inability of the display system to effectively display clear images of one-pixel width lines at a
resolution of 1600 x 1200. The one-pixel width lines essentially look like a gray field when
displayed on the projectors. The lines are discernable however on direct view monitors that are
also connected to the computer system. It could indicate a focus problem and/or the need for
some line amplifiers. Where the problem lies (the projectors, screen, cables, need for amplifiers,
etc.) still needs to be determined. It did however put priorities in perspective for the DataWall
project, forcing us to improve the display quality at our current resolution before setting out to
create an even higher resolution display system.

The initial objective of this in-house task was to develop a Sun Microsystems-based version of
the test pattern generation application to support Sun-based DataWall implementations. What
resulted was an X Windows platform independent application capable of generating a number of
test patterns used to align and adjust various characteristics of high resolution, tiled (e.g.

31

DataWall) or overlaid (e.g. stereoscopic 3D) projected displays. We chose X Windows as the
development standard to maximize the portability potential given the economic constraints. The
resulting application has proven very successful. This tool has been evolving as the DataWall
and 3D stereoscopic displays evolve, with improvements made as system specific needs arise. Its
future effectiveness will be determined as these display environments continue to mature, and the
need for any additional enhancements and extensions are identified.

32

References

[1] Alphonse, G. A., Lubin, J., "Psychophysical requirements for tiled large screen displays",
SPIE Vol. 1664 High-Resolution Displays and Projection Systems, 1992, pp.230-240.

[2] Biberman, L. M., Perception of Displayed Information, Plenum Press, New York, NY, 1973.
Holmes, R. E., "Videorama™ - a new concept in juxtaposed large screen displays", SHE
Vol. 1081 Projection Display Technology. Systems, and Applications, 1989, pp. 15-20.

[3] Integrated Computer Solutions, Builder Xcessorv User's Guide, 1998.

[4] Jedrysik, P. A., Interactive Test Patterns for Tiled and Stereoscopic Displays, RL-TM-96-2,
April 1996.

[5] Jedrysik, P. A., Sweed R., and VanPelt, R. 'Test Pattern Generation Software Final Report",
May 1998.

[6] Mashushi, T., Small, D., & MacNeil, R. L., "6,000 x 2,000 Display Prototype", SPIE Vol.
1664 High-Resolution Displays and Projection Systems, 1992, pp. 202-209.

33

MISSION
OF

AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

